next up previous contents
Next: About this document ... Up: main Previous: Bibliography   Contents

Bibliography

1
Prat-Resina, X., Garcia-Viloca, M., González-Lafont, A., Lluch, J. M.
On the modulation of the substrate activity for the racemization catalyzed by mandelate racemase enzyme. a qm/mm study.
Phys. Chem. Chem. Phys. 4:5365-5371, 2002.

2
Prat-Resina, X., Garcia-Viloca, M., Monard, G., González-Lafont, A., Lluch, J. M., Anglada, J. M., Bofill, J. M.
The search for stationary points on a quantum mechanical/molecular mechanical potential-energy surface.
Theor. Chem. Acc. 107:147-153, 2002.

3
Prat-Resina, X., Bofill, J. M., González-Lafont, A., Lluch, J. M.
Geometry optimization and transition state search in enzymes: Different options in the micro-iterative method.
Int. J. Quant. Chem. 98(4):367-377, 2004.

4
Prat-Resina, X., González-Lafont, A., Lluch, J. M.
How important is the refinement of transition state structures in enzymatic reactions?
J. Mol. Struct. (Theochem) 632:297-307, 2003.

5
Monard, G., Prat-Resina, X., González-Lafont, A., Lluch, J. M.
Determination of enzymatic reaction pathways using qm/mm methods.
Int. J. Quant. Chem. 93:229-244, 2003.

6
Nam, K., Prat-Resina, X., Garcia-Viloca, M., Devi-Kesavan, L. S., Gao, J.
Dynamics of an enzymatic substitution reaction in haloalkane dehalogenase.
J. Am. Chem. Soc. 126:1369-1376, 2004.

7
Prat-Resina, X., González-Lafont, A., Lluch, J. M.
Free energy calculations on different reaction coordinates of mandelate racemase.
in preparation.

8
Pauling, L., Wilson, E. B. Introduction to Quantum Mechanics. With Applications to Chemistry.
New York: Dover. 1985.

9
Pilar, F. L.
Elementary Quantum Chemistry: McGraw-Hill Inc.. 1968.

10
Daudel, R., Leroy, G., Peters, D., Sana, M. Quantum Chemistry.
New York: John Wiley & Sons. 1983.

11
Jensen, F. Introduction to Computational Chemistry.
West Sussex, England: John Wiley & Sons. 1999.

12
Fletcher, R. Practical methods of optimization.
2nd Ed. Tiptree, Essex, United Kingdom: John Wiley & Sons. 1987.

13
Leach, A. R. Molecular Modelling. Principles and Applications.
2nd edition Ed. Essex, England: Pearson Education. 2001.

14
Schlick, T. Molecular modeling and simulation. An Interdisciplinary Guide.
New York: Springer. 2002.

15
Allen, M. P., Tildesley, D. J. Computer Simulation of Liquids.
Oxford: Oxford University Press. 1987.

16
McQuarrie, D. A. Statistical Mechanics.
Sausalito, California: University Science Books. 2000.

17
Nye, M. J.
From Chemical Philosophy to Theoretical Chemistry: Dynamics of Matter and Dynamics of Disciplines, 1800-1950: University of California Press. 1994.

18
Levine, I. N. Química Cuántica.
Spanish version from the original "quantum chemistry" Ed. Madrid: AC. 1977.

19
Cramer, C. J.
Essentials of Computational Chemistry : Theories and Models: John Wiley & sons. 2002.

20
Nakamura, H. Nonadiabatic Transition: Concepts, Basic Theories and Applications.
Singapore: World Scientific. 2002.

21
Baer, M.
Introduction to the theory of electronic non-adiabatic coupling terms in molecular systems.
Phys. Rev. 358:75-142, 2002.

22
Handy, N. C., Yamaguchi, Y., Schaefer III, H. F.
The diagonal correction to the born-oppenheimer approximation: Its effect on the singlet-triplet splitting of ch$ _2$ and other molecular effects.
J. Chem. Phys. 84(8):4481-4484, 1986.

23
Wilson, E., Decius, J. C., Cross, P. Molecular Vibrations.
New York: Dover. 1980.

24
Kosloff, R.
Time-dependent quantum-mechanical methods for molecular dynamics.
J. Phys. Chem. 92:2087-2100, 1988.

25
Miller, W. H.
The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations.
J. Phys. Chem. A 105:2942-2955, 2001.

26
Beck, M., JaKckle, A., Worth, G., Meyer, H.-D.
The multiconfiguration time-dependent hartree (mctdh) method: a highly eficient algorithm for propagating wavepackets.
Phys. Rep. 324:1-105, 2000.

27
Issue dedicated to time-dependent quantum molecular dynamics.
J. Phys. Chem. A 103(47).

28
Szabo, A., Ostlund, N. S. Modern Quantum Chemistry.
New York: Dover. 1983.

29
Goedecker, S.
Linear scaling electronic structure methods.
Rev. Mod. Phys. 71(4):1085-1123, 1999.

30
Dewar, M. J. S., Thiel, W.
Ground states of molecules, 38. the mndo method. approximations and parameters.
J. Am. Chem. Soc. 99:4899-4907, 1977.

31
Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., Stewart, J. J. P.
Am1: A new general purpose quantum mechanical model.
J. Am. Chem. Soc. 107:3902-3909, 1985.

32
Stewart, J. J. P.
Optimization of parameters for semiempirical methods. i. method.
J. Comp. Chem. 10:209-220, 1989.

33
Stewart, J. J. P.
Optimization of parameters for semiempirical methods. ii. applications.
J. Comp. Chem. 10:221-264, 1989.

34
Clark, T.
Quo vadis semiempirical mo-theory?
J. Mol. Struct. (Theochem) 530:1-10, 2000.

35
Pople, J. A., Beveridge, D. L. Approximate Molecular Orbital Theory.
New York: McGraw-Hill. 1970.

36
Bernal-Uruchurtu, M. I., Ruiz-Lopez, M. F.
Basic ideas for the correction of semiempirical methods describing h-bonded systems.
Chem. Phys. Lett 330:118-124, 2000.

37
Hohenberg, P., Kohn, W.
Inhomogeneous electron gas.
Phys. Rev. 136:864, 1964.

38
Ziegler, T.
Approximate density functional theory as a practical tool in molecular energetics and dynamics.
Chem. Rev. 91:651-667, 1991.

39
Kohn, W.
Nobel lecture: Electronic structure of matter wave functions and density functionals.
Rev. Mod. Phys. 71(5):1253-1266, 1999.

40
Kohn, W., Sham, L.
Self-consistent equations including exchange and correlation effects.
Phys. Rev. A 140:1133, 1965.

41
Parr, R. G., Yang, W.
Density Functional Theory: Oxford University Press. 1989.

42
Becke, A. D.
Density-functional exchange-energy approximation with correct asymptotic behavior.
Phys. Rev. A 38:3098-3100, 1988.

43
Lee, C., Yang, W., Parr, R. G.
Development of the colle-salvetti correlation-energy formula into a functional of the electron density.
Phys. Rev. B 37:785-789, 1988.

44
Becke, A. D.
Density-functional thermochemistry. iii. the role of exact exchange.
J. Chem. Phys. 98(7):5648-5652, 1993.

45
Koch, W., Holthausen, M. C. Chemist's Guide to Density Functional Theory.
Weinheim: Wiley-VCH. 2000.

46
Luchow, A., Anderson, J. B.
Monte Carlo methods in electronic structures for large systems.
Annu. Rev. Phys. Chem. 51:501-526, 2000.

47
Head-Gordon, M.
Quantum chemistry and molecular processes.
J. Phys. Chem. 100(31):13213-13225, 1996.

48
Steinbach, P. J., Brooks, B. R.
New spherical-cut-off methods for long-range forces in macromolecular simulation.
J. Comput. Chem 15:667-683, 1994.

49
Feller, S. E., Pastor, R. W., Rojnuckarin, A., Bogusz, S., Brooks, B. R.
Effect of electrostatic force truncation on interfacial and transport properties of water.
J. Phys. Chem. 100:17011-17020, 1996.

50
Frenkel, D., Smit, B. Understanding Molecular Simulation: From Algorithms to Applications.
San Diego. CA: Academic Press. 1996.

51
Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G. S., Profeta, J., Weiner, P.
-.
J. Am. Chem. Soc. 106:765, 1984.

52
Pearlman, D., Case, D., Caldwell, J., Ross, W., Cheatham, T., Debolt, S., Ferguson, D., Seibel, G., Kollman, P.
Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular- dynamics and free-energy calculations to simulate the structural and energetic properties of molecules.
Comp. Phys. Comm. 91(1-3):1-41, 1995.

53
Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., Karplus, M.
Charmm: A program for macromolecular energy, minimization and dynamics calculations.
J. Comput. Chem. 4(2):187-217, 1983.

54
MacKerell Jr., A. D., Bashford, D., Bellott, M., Dunbrack Jr., R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher III, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D., Karplus, M.
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J. Phys. Chem. B 102:3586-3616, 1998.

55
Jorgensen, W. L., Maxwell, D. S., Tirado-Rives, J.
Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids.
J. Am. Chem. Soc. 118(45):11225-11236, 1996.

56
Scott, W. R. P., Hünenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., Torda, A. E., Huber, T., Krüger, P., van Gunsteren, W. F.
The gromos biomolecular simulation program package.
J. Phys. Chem. A 103(19):3596-3607, 1999.

57
Price, D. J., Brooks III, C. L.
Modern protein force fields behave comparably in molecular dynamics simulations.
J. Comput. Chem. 23(23):1045-1057, 2002.

58
Cramer, C. J., Truhlar, D. G.
Implicit solvation models: Equilibria, structure, spectra, and dynamics.
Chem. Rev. 99:2161-2200, 1999.

59
Roux, B. Computational biochemistry & biophysics.
New York: Marcel Dekker Inc. 2001.

60
Cui, Q.
Combining implicit solvation models with hybrid quantum mechanical/molecular mechanical methods: A critical test with glycine.
J. Chem. Phys. 117(10):4720-4728, 2002.

61
Orozco, M., Luque, F. J.
Theoretical methods for the description of the solvent effect in biomolecular systems.
Chem. Rev. 100:4187-4225, 2000.

62
Garcia-Viloca, M., Gao, J., Karplus, M., G.Truhlar, D.
How enzymes work:analysis by modern rate theory and computer simulations.
Science 303:186-195, 2004.

63
Matsubara, T., Maseras, F., Koga, N., Morokuma, K.
Application of the new "integrated mo + mm" (imomm) method to the organometallic reaction pt(pr$ _3$)$ _2$ + h$ _2$ (r = h, me, t-bu, and ph).
J. Phys. Chem. 100(7):2573-2580, 1996.

64
Maseras, F., Lledós, A. Computational modeling of homogeneous catalysis.
Dordrecht (Holland): Kluwer. 2002: 1-21.

65
Sierka, M., Sauer, J.
Finding transition structures in extended systems: A strategy based on a combined quantum mechanics empirical valence bond approach.
J. Chem. Phys. 112(16):6983-6996, 2000.

66
Warshel, A., Levitt, M.
Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozime.
J. Mol. Biol. 103:227-249, 1976.

67
Singh, U. C., Kollman, P. A.
A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the $ ch_3cl+cl^-$ exchange reaction and gas phase protonation of polyethers.
J. Comput. Chem. 7(6):718-730, 1986.

68
Field, M. J., Bash, P. A., Karplus, M.
A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations.
J. Comput. Chem. 11(6):700-733, 1990.

69
Warshel, A., Karplus, M.
Calculation of ground and excited state potential surfaces of conjugated molecules. i. formulation and parametrization.
J. Am. Chem. Soc. 94(16):5612-5625, 1972.

70
Gao, J., Thompson, M. A., eds. Combined Quantum Mechanical and Molecular Mechanical Methods.
ACS Symposium Series 712 Washington D.C.: American Chemical Society. 1998.

71
Monard, G., Merz, K. M.
Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems.
Acc. Chem. Res. 32:904-911, 1999.

72
Field, M. J.
Simualting enzyme reactions: challenges and perspectives.
J. Comput. Chem. 23(1):48-58, 2002.

73
Bakowies, D., Thiel, W.
Hybrid models for combined quantum mechanical and molecular mechanical approaches.
J. Phys. Chem. 100:10580-10594, 1996.

74
Besler, B. H., Merz Jr., K. M., Kollman, P. A.
Atomic charges derived from semiempirical methods.
J. Comput. Chem. 11:431-439, 1990.

75
Luque, F. J., Reuter, N., Cartier, A., Ruiz-Lopez, M. F.
Calibration of the quantum/classical hamiltonian in semiempirical qm/mm am1 and pm3 methods.
J. Phys. Chem. A 104:10923-10931, 2000.

76
Cummins, P. L., Gready, J. L.
Coupled semiempirical quantum mechanics and molecular mechanics (qm/mm) calculations on the aqueous solvation free energies of ionized molecules.
J. Comput. Chem. 20:1028, 1999.

77
Freindorf, M., Gao, J.
Optimization of the lennard-jones parameters for a combined ab-initio quantum-mechanical and molecular mechanical potential using the 3-21g basis-set.
J. Comput. Chem. 17(4):386-395, 1996.

78
Martin, M. E., Aguilar, M. A., Chalmet, S., Ruiz-Lopez, M. F.
An iterative procedure to determine lennard-jones parameters for their use in quantum mechanics/molecular mechanics liquid state simulations.
Chem. Phys. 284:607-614, 2002.

79
Ranganathan, S., Gready, J. E.
Hybrid quantum and molecular mechanical (qm/mm) studies on the pyruvate to l-lactate interconversion in l-lactate dehydrogenase.
J. Phys. Chem. B 101(28):5614-5618, 1997.

80
Reuter, N., Dejaegere, A., Maigret, B., Karplus, M.
Frontier bonds in qm/mm methods: a comparison of different approaches.
J. Phys. Chem. A 104(8):1720-1735, 1999.

81
Hall, R. J., Hindle, S. A., Burton, N. A., Hillier, I. H.
Aspects of hybrid qm/mm calculations: the treatment of the qm/mm interface region and geometry optimization with an application to chorismate mutase.
J. Comput. Chem. 21(16):1433-1441, 2000.

82
Antes, I., Thiel, W.
Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods.
J. Phys. Chem. B 103:9290-9295, 1999.

83
Cummins, P. L., Gready, J. E.
Combined quantum and molecular mechanics (qm/mm) study of the ionization state of 8-methylpterin substrate bound to dihydrofolate reductase.
J. Phys. Chem. B 104(18):4503-4510, 2000.

84
Zhang, Y., Liu, H., Yang, W.
Free energy calculations on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio qm/mm potential energy surface.
J. Chem. Phys. 112(8):3483-3492, 2000.

85
Das, D., Eurenius, K. P., Billings, E. M., Sherwood, P., Chatfield, D. C., Hodoscek, M., Brooks, B. R.
Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method.
J. Chem. Phys. 117(23):10534-10547, 2002.

86
DiLabio, G. A., Hurley, M. M., Christiansen, P. A.
Simple one-electron quantum capping potentials for use in hybrid qm/mm studies of biological molecules.
J. Chem. Phys. 116(22):9578-9584, 2002.

87
Swart, M.
Addremove: A new link model for use in qm/mm studies.
Int. J. Quant. Chem. 91:177-183, 2003.

88
Théry, V., Rinaldi, D., Rivail, J.-L., Maigret, B., Frenczy, B.
Quantum mechanical computations on very large molecular systems : the local self-consistent field method.
J. Comp. Chem. 15:269-282.

89
Monard, G., Loos, M., Théry, V., Baka, K., Rivail, J.-L.
Hybrid classical quantum force field for modeling very large molecules.
Int. J. Quantum Chem. 58:153-159, 1996.

90
Nicolas Ferré, J.-L. R. Xavier Assfeld.
Specific force field parameters determination for the hybrid ab initio qm/mm lscf method.
J. Comp. Chem. 23:610-624, 2002.

91
Gao, J., Amara, P., Alhambra, C., Field, M. J.
A generalized hybrid orbital (gho) method for the treatment of boundary atoms in combined qm/mm calculations.
J. Phys. Chem. A 12(24):4714-4721, 1998.

92
Amara, P., Field, M. J., Alhambra, C., Gao, J.
The generalized hybrid orbital (gho) method for combined qm/mm calculations: Formulation and tests of the analytical derivatives.
Theor. Chem. Acc. 104:336-343, 2000.

93
Garcia-Viloca, M., Gao, J.
Generalized hybrid orbital for the treatment of boundary atoms in combined quantum mechanical and molecular mechanical calculations using the semiempirical parameterized model 3 method.
Theor. Chem. Acc. ASAP.

94
Pu, J., Gao, J., Truhlar, D. G.
Generalized hybrid orbital (gho) method for combining ab initio hartree-fock wave functions with molecular mechanics.
J. Phys. Chem. A 108(4):632-650, 2004.

95
Murphy, R., Philipp, D., Friesner, R.
Frozen orbital qm/mm methods for density functional theory.
Chem. Phys. Lett. 321:113-120, 2000.

96
Hyperchem.
HyperChem Users Manual.
1998.

97
Cui, Q., Elstner, M., Kaxiras, E., Frauenheim, T., Karplus, M.
A qm/mm implementation of the self-consistent charge density functional tight binding (scc-dftb) method.
J. Phys. Chem. B 105:569-585, 2001.

98
Formaneck, M. S., Li, G., Zhang, X., Cui, Q.
Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (scc-dftb) method:applications to structural and energetic analysis.
J. Comp. Chem. 24:565-581, 2003.

99
Lee, Y. S., Worthington, S. E., Krauss, M., Brooks, B. R.
Reaction mechanism of chorismate mutase studied by the combined potentials of quantum mechanics and molecular mechanics.
J. Phys. Chem. B 106:12059-12065, 2002.

100
Lyne, P. D., Hodoscek, M., Karplus, M.
A hybrid qm-mm potential employing hartree-fock or density functional methods in the quantum region.
J. Phys. Chem. A 103:3462-3471, 1999.

101
Tuńón, I., Martins-Costa, M., Millot, C., Ruiz-López, M., Rivail, J.
A coupled density functional-molecular mechanics monte carlo simulation method: The water molecule in liquid water.
J. Comput. Chem. 17(1):19-29, 1996.

102
Tuńón, I., Martins-Costa, M., Millot, C., Ruiz-López, M.
Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. i. proton transfer in strongly h-bonded complexes.
J. Chem. Phys. 106(9):3633-3642, 1997.

103
Friesner, R. A., Dunietz, B. D.
Large-scale ab initio quantum chemical calculations on biological systems.
Acc. Chem. Res. 34:351-358, 2001.

104
Sherwood, P., de Vries, A. H., Guest, M. F., Schreckenbach, G., Catlow, C. R. A., French, S. A., Sokol, A. A., Bromley, S. T., Thiel, W., c, A. J. T., Billeter, S., Terstegen, F., Thiel, S., Kendrick, J., Rogers, S. C., Casci, J., Watson, M., King, F., Karlsen, E., Sjřvoll, M., Fahmi, A., Schafer, A., Lennartz, C.
Quasi: A general purpose implementation of the qm/mm approach and its application to problems in catalysis.
J. Mol. Struct. (Theochem) 632:1-28, 2003.

105
Kongsted, J., Osted, A., Mikkelsen, K. V., Christiansen, O.
Coupled cluster/molecular mechanics method: Implementation and application to liquid water.
J. Phys. Chem. B 107:2578-2588, 2003.

106
Car, R., Parrinello, M.
Unified approach for molecular dynamics and density-functional theory.
Phys. Rev. Lett. 55(22):2471-2474, 1985.

107
Carloni, P., Rothlisberger, U., Parrinello, M.
The role and perspective of ab initio molecular dynamics in the study of biological systems.
Acc. Chem. Res. 35:455-464, 2002.

108
Maseras, F., Morokuma, K.
Imomm: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states.
J. Comput. Chem. 16(9):1170-1179, 1995.

109
Dapprich, S., Komáromi, I., Byun, K. S., Morokuma, K., Frisch, M. J.
A new oniom implementation in gaussian98. part i. the calculation of energies, gradients, vibrational frequencies and electric field derivatives.
J. Mol. Struct. (Theochem) 461:1-21, 1999.

110
Hurley, M. M., Wright, J. B., Lushington, G. H., White, W. E.
Quantum mechanics and mixed quantum mechanics/molecular mechanics simulations of model nerve agents with acetylchozlinesterase.
Theor. Chem. Acc. 109:160-168, 2003.

111
Vreven, T., Morokuma, K.
Investigation of the s$ _0\to$s$ _1$ excitation in bacteriorhodopsin with the oniom (mo:mm) hybrid method.
Theor. Chem. Acc 109(3):125-132, 2003.

112
Warshel, A.
Computer Modeling of Chemical Reactions in Enzymes and Solutions: New York. 1992.

113
Warshel, A.
Molecular dynamics simulations of enzymatic reactions.
Acc. Chem. Res. 35:385-395, 2002.

114
Warshel, A., Parson, W. W.
Dynamics of biochemical and biophysical reactions : insight from computer simulations.
Quarterly Review of Biopysics 4:563-679, 2001.

115
Warshel, A.
Computer simulations of enzyme catalysis: Methods, progress, and insights.
Ann. Rev. Biophys. Biomol. Struct. 32:425-443, 2003.

116
Mo, Y., Gao, J.
An ab initio molecular orbital-valence bond (movb) method for simulating chemical reactions in solution.
J. Phys. Chem. A 104:3012-3020, 2000.

117
Devi-Kesavan, L. S., Garcia-Viloca, M., Gao, J.
Semiempirical qm/mm potential with simple valence bond (svb) for enzyme reactions. application to the nucleophilic addition reaction in haloalkane dehalogenase.
Theor. Chem. Acc. 109(3):133-139, 2003.

118
Hong, G., Strajbl, M., Wesolowski, T. A., Warshel, A.
Constraining the electron densities in dft method as an effective way f or ab initio studies of metal-catalyzed reactions.
J. Comp. Chem. 21(16):1554-1561, 2000.

119
Cummins, P. L., Gready, J. E.
Computational methods for the study of enzymic reaction mechanisms. ii. an overlapping mechanically embedded method for hybrid semi-empirical-qm/mm calculations.
J. Mol. Struct. (Theochem) 632:247-257, 2003.

120
Hayashi, S., Ohmine, I.
Proton transfer in bacteriorhodopsin: Structure, excitation, ir spectra, and potential energy surface analyses by an ab initio qm/mm method.
J. Phys. Chem. B 104:10678-10691, 2000.

121
Poteau, R., Ortega, I., Alary, F., Solis, A. R., Barthelat, J.-C., Daudey, J.-P.
Effective group potentials. 1. method.
J. Phys. Chem. A 105:198-205, 2001.

122
Kairys, V., Jensen, J. H.
Qm/mm boundaries across covalent bonds: A frozen localized molecular orbital-based approach for the effective fragment potential method.
J. Phys. Chem A 104:6656-6665, 2000.

123
Gogonea, V., Westerhoff, L. M., Merz Jr., K. M.
Quantum mechanical/quantum mechanical methods. i. a divide and conquer strategy for solving the schrodinger equation for large molecular systems using a composite density functional semiempirical hamiltonian.
J. Chem. Phys. 113(14):5604-5613, 2000.

124
Cui, Q., Guo, H., Karplus, M.
Combining ab initio and density functional theories with semiempirical methods.
J. Chem. Phys. 117(12):5617-5631, 2002.

125
Komeiji, Y., Nakano, T., Fukuzawa, K., Ueno, Y., Inadomi, Y., Nemoto, T., Uebayasi, M., G.Fedorov, D., a, K. K.
Fragment molecular orbital method:i application to molecular dynamics simulation, ab initio fmo-md.
Chem. Phys. Lett. 372:342-347, 2003.

126
Zhang, D. W., Zhang, J. Z. H.
Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein molecule interaction energy.
J. Chem. Phys. 119(7):3599-3605, 2003.

127
Cui, Q., Karplus, M.
Molecular properties from combined qm/mm methods. i. analytical second derivative and vibrational calculations.
J. Chem. Phys. 112(3):1133-1149, 2000.

128
Wales, D. J.
A microscopic basis for the global appearance of energy landscapes.
Science 293:2067-2070, 2001.

129
Onuchic, J. N., Luthey-Schulten, Z., Wolynes, P. G.
Theory of protein folding: The energy landscape perspective.
Annu. Rev. Phys. Chem. 48:545-600, 1997.

130
Simons, J., Jorgensen, P., Taylor, H., Ozment, J.
J. Phys. Chem. 87:2745, 1983.

131
Banerjee, A., Adams, N., Simons, J., Shepard, R.
Search for stationary points on surfaces.
J. Phys. Chem. 89:52-57, 1985.

132
Pulay, P.
Improved scf convergence acceleration.
J. Comput. Chem. 3:556, 1982.

133
Császár, P., Pulay, P.
Geometry optimization by direct inversion in the iterative subspace.
J. Mol. Struct. 114:31-34, 1984.

134
Wittbrodt, J. M., Schlegel, H. B.
Estimating stretching force constants for geometry optimization.
J. Mol. Struct. (Theochem) 398:55-61, 1997.

135
Bofill, J. M.
Updated hessian matrix and the restricted step method for locating transition structures.
J. Comput. Chem. 15(1):1-11, 1994.

136
Anglada, J. M., Bofill, J. M.
How good is a broyden-fletcher-goldfarb-shanno-like update hessian formula to locate transition structures? specific reformulation of broyden-fletcher-goldfarb-shanno for optimizing saddle points.
J. Comput. Chem. 19(3):349-362, 1998.

137
Bolhuis, P. G., Chandler, D., Dellago, C., Geissler, P. L.
Transition path sampling: throwing ropes over rough mountain passes, in the dark.
Annu. Rev. Phys. Chem. 53:291-318, 2002.

138
Schlegel, B.
Exploring potential energy surfaces for chemical reactions: An overview of some practical methods.
J. Comput. Chem. 24(12):1515-1527, 2003.

139
Heidrich, D., ed. The Reaction Path in Chemistry: Current Approaches and Perspectives.
Dordrecht: Kluwer Academic. 1995.

140
Eurenius, K. P., Chatfield, D. C., Brooks, B. R., Hodoscek, M.
Enzyme mechanisms with hybrid quantum mechanical and molecular mechanical potentials. i. theoretical considerations.
Int. J. Quantum Chem. 60(6):1189-1200, 1996.

141
Fukui, K.
The path of chemical reactions - the irc approach.
Acc. Chem. Res. 14(12):363-368, 1981.

142
Henkelman, G., Jóhannesson, G., Jónsson, H.
Methods for finding saddle points and minimum energy paths.
In: Progress on Theoretical Chemistry and Physics. Schwartz, S. D. ed. . Kluwer Academic Publishers 2000  269-300.

143
Henkelman, G., Jónsson, H.
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points.
J. Chem. Phys. 113(22):9978-9985, 2001.

144
Chu, J.-W., Trout, B. L., Brooks, B. R.
A super-linear minimization scheme for the nudged elastic band method.
J. Chem. Phys. 119(24):12708-12717, 2003.

145
Crehuet, R., Field, M. J.
A temperature-dependent nudged-elastic-band algorithm.
J. Chem. Phys. 118(21):9563-9571, 2003.

146
Fischer, S., Karplus, M.
Conjugate peak refinement: an algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom.
Chem. Phys. Lett. 194(3):252-261, 1992.

147
Dutzler, R., Schirmer, T., Karplus, M., Fischer, S.
Translocation mechanism of long sugar chains across the maltoporin membrane channel.
Structure 10(9):1273-1284, 2002.

148
Woodcock, H. L., Hodoscek, M., Sherwood, P., Lee, Y. S., Schaefer III, H. F., R.Brooks, B.
Exploring the quantum mechanical/molecular mechanical replica path method: a pathway optimization of the chorismate to prephenate claisen rearrangement catalyzed by chorismate mutase.
Theor. Chem. Acc. 109(3):140-148, 2003.

149
Pulay, P., Fogarasi, G.
Geometry optimization in redundant internal coordinates.
J. Chem. Phys. 96(4):2856-2860, 1992.

150
Kudin, K. N., Scuseria, G. E., Schlegel, H. B.
A redundant internal coordinate algorithm for optimization of periodic systems.
J. Chem. Phys. 114(7):2919-2923, 2001.

151
Eckert, F., Pulay, P., Werner, H.-J.
Ab initio geometry optimization for large molecules.
J. Comput. Chem. 18(12):1473-1483, 1997.

152
Nocedal, J.
Updating quasi-newton matrices with limited storage.
Mathematics of Computation 35(151):773-782, 1980.

153
Liu, D. C., Nocedal, J.
On the limited memory bfgs method for large scale optimization.
Math. Programming 45:503-528, 1989.

154
Moreales, J. L., Nocedal, J.
Enriched methods for large-scale unconstrained optimization.
Comp. Opt. Appl. 21(2):143-154, 2002.

155
Anglada, J. M., Besalú, E., Bofill, J. M., Rubio, J.
Another way to implement the powell formula for updating hessian matrices related to transition structures.
J. Math. Chem. 25:85-92, 1999.

156
Schlick, T., Overton, M.
J. Comput. Chem. 8:1025, 1987.

157
Derremaux, P., Zhang, G., Schlick, T., Brooks, B.
A truncated newton minimizer adapted for charmm and biomolecular applications.
J. Comput. Chem. 15(5):532-552, 1994.

158
Thomas, A., Field, M. J.
Reaction mechanism of the hgxprtase from plasmodium falciparum: A hybrid potential quantum mechanical/ molecular mechanical study.
J. Am. Chem. Soc. 12432-12438, 2002.

159
Moliner, V., Turner, A. J., Williams, I. H.
Transition-state structural refinement with grace and charmm: realistic modelling of lactate dehydrogenase using a combined quantum/classical method.
J. Chem. Soc. Chem. Comm. 14:1271-1272, 1997.

160
Turner, A. J., Moliner, V., Williams, I. H.
Transition-state structural refinement with grace and charmm: Flexible qm/mm modelling for lactate dehydrogenase.
Phys. Chem. Chem. Phys. 1:1323-1331, 1999.

161
Billeter, S. R., Turner, A. J., Thiel, W.
Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates.
Phys. Chem. Chem. Phys. 2:2177-2186, 2000.

162
Vreven, T., Morokuma, K., Farkas, Ö., Schlegel, H. B., Frisch, M. J.
Geometry optimization with combined methods. i. micro-iterations and constraints.
J. Comput. Chem. 24(6):760-769, 2003.

163
Németh, K., Coulaud, O., Monard, G., Ángyán, J. G.
Linear scaling algorithm for the coordinate transformation problem of molecular geometry optimization.
J. Chem. Phys. 113(6):5598-5603, 2000.

164
Németh, K., Coulaud, O., Monard, G., Ángyán, J. G.
An efficient method for the coordinate transformation problem of massively three-dimensional networks.
J. Chem. Phys. 114(22):9747-9753, 2001.

165
Paizs, B., Baker, J., Suhai, S., Pulay, P.
Geometry optimization of large biomolecules in redundant internal coordinates.
J. Chem. Phys 113(16):6566-6572, 2000.

166
Tuckerman, M. E., Martyna, G. J.
Understanding modern molecular dynamics: Techniques and applications.
J. Phys. Chem. B 104:159-178, 2000.

167
Goldstein, H. Mecánica Clásica.
Barcelona: Reverté. 1996.
Spanish translation of the second english edition.

168
Truhlar, D. G., Gao, J., Alhambra, C., Garcia-Viloca, M., Corchado, J., Sánchez, M. L., Villá, J.
The incorporation of quantum effects in enzyme kinteics modeling.
Acc. Chem. Res. 35(6):341-349, 2002.

169
Elber, R., Ghosh, A., Cárdenas, A.
Long time dynamics of complex systems.
Acc. Chem. Res. 35:396-403, 2002.

170
Issue dedicated to molecular dynamics simulations of biomolecules.
Acc. Chem. Res. 35(6).

171
Andersen, H. C.
Molecular dynamics simulations at constant pressure and/or temperature.
J. Chem. Phys. 72(4):2384-2393, 1980.

172
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., Haak, J. R.
Molecular dynamics with coupling to an external bath.
J. Chem. Phys. 81(8):3684-3690, 1984.

173
Nosé, S.
A unified formulation of the constant temperature molecular dynamics methods.
J. Chem. Phys. 81(1):511-519, 1984.

174
Hoover, W. G.
Canonical dynamics: Equilibrium phase-space distributions.
Phys. Rev. A 31(3):1695-1697, 1985.

175
Martyna, G. J., and, M. L. K.
Nosé-hoover chains: The canonical ensemble via continuous dynamics.
J. Chem. Phys. 97(4):2635-2643, 1992.

176
Cheng, A., Merz Jr., K. M.
Application of the nosé-hoover chain algorithm to the study of protein dynamics.
J. Phys. Chem. 100(5):1927-1937, 1996.

177
Zhang, Y., Feller, S. E., Brooks, B. R., Pastor, R. W.
Computer simulation of liquid/liquid interfaces. i. theory and application to octane/water.
J. Chem. Phys. 103(23):10252-10266, 1995.

178
Ryckaert, J.-P., Ciccotti, G., Berendsen, H. J. C.
Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes.
J. Comp. Phys. 23:327-341, 1977.

179
Kräutler, V., Gunsteren, W. F. V., Hünenberger, P. H.
A fast shake algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations.
J. Comput. Chem. 22(5):501-508, 2001.

180
Tobias, D. J., Brooks III, C. L.
Molecular dynamics with internal coordinate constraints.
J. Chem. Phys. 89(9):5115-5127, 1988.

181
Coluzza, I., Sprik, M., Ciccotti, G., Fom, A.
Constrained reaction coordinate dynamics for systems with constraints.
Mol. Phys. 101(18):2885-2894, 2003.

182
Issue dedicated to computational molecular biophysics.
J. Comput. Phys. 1(151).

183
Brooks III, C. L., Karplus, M.
Deformable stochastic boundaries in molecular dynamics.
J. Chem. Phys. 79(12):6312-6325, 1983.

184
Brunger, A., Brooks III, C. L., Karplus, M.
Stochastic boundary conditions for molecular dynamics simulations of st2 water.
Chem. Phys. Lett. 105(5):495-500, 1984.

185
Brooks III, C. L., Brunger, A., Karplus, M.
Active site dynamics in protein molecules: A stochastic boundary molecular-dynamics approach.
Biopolymers 24:843-865, 1985.

186
Brooks III, C. L., Karplus, M.
Solvent effects on protein motion and protein effects on solvent motion. dynamics of the active site region of lysozyme.
J. Mol. Biol. 208:159-181, 1989.

187
Alhambra, C., Gao, J.
Hydrogen bonding interactions in the active site of a low molecular weight protein tyrosine phosphatase.
J. Comput. Chem. 21:1192-1203, 2000.

188
Li, G., Zhang, X., Cui, Q.
Free energy perturbation calculations with combined qm/mm potentials complications, simplifications, and applications to redox potential calculations.
J. Phys. Chem. B 107:8643-8653, 2003.

189
Garcia-Viloca, M., Alhambra, C., G.Truhlar, D., Gao, J.
Hydride transfer catalyzed by xylose isomerase: Mechanism and quantum effects.
J. Comp. Chem. 24:177-190, 2003.

190
Tolman, R. C. The Principles of Statistical Mechanics.
New York: Dover Publications Inc.. 1979.

191
Chandler, D. Introduction to Modern Statistical Mechanics.
New York: Oxford University Press. 1987.

192
Kollman, P.
Free energy calculations: Applications to chemical and biochemical phenomena.
Chem. Rev. 93:2395-2417, 1993.

193
Masgrau, L., Ŕngels González-Lafont, Lluch, J. M.
Dependence of the rate constants on the treatment of internal rotation modes: The reaction oh + ch$ _3$sh $ \to$ ch$ _3$s + h$ _2$o as an example.
J. Comput. Chem. 24(6):701-706, 2003.

194
Garcia-Viloca, M., Alhambra, C., Truhlar, D. G., Gao, J.
Inclusion of quantum-mechanical vibrational energy in reactive potentials of mean force.
J. Chem. Phys. 114(22):9953-9958, 2001.

195
Stanton, R. V., Dixon, S. L., Merz, Jr., K. M.
Free energy perturbation calculations within quantum mechanical methodologies.
In: Computational Approaches to Biochemical reactivity. Naray-Szabo, G., Warshel, A. eds. . Kluwer Academic Publishers Dordrecht 1997  103-123.

196
Torrie, G. M., Valleau, J. P.
Nonphysical sampling distributions in monte carlo free energy estimation: Umbrella sampling.
J. Comput. Phys. 23:187-199, 1977.

197
González-Lafont, A., Lluch, J. M., Bertrán, J.
Monte carlo simulations of chemical reactions in solution.
In: Solvent Effects and Chemical Reactivity. Tapia, O., Bertrán, J. eds. Understanding Chemical Reactivity. Kluwer Academic Publishers Dordrecht 1996  125-177.

198
Kumar, S., Bouzida, D., Swendsen, R. H., Kollman, P. A., Rosenberg, J. M.
The weighted histogram analysis method for free-energy calculations on biomolecules. i. the method.
J. Comput. Chem. 13(8):1992, 1011-1021.

199
Boczko, E. M., Brooks III, C. L.
Constant-temperature free energy surfaces for physical and chemical processes.
J. Phys. Chem. 97:4509-4513, 1993.

200
Rajamani, R., Naidoo, K. J., Gao, J.
Implementation of an adaptive umbrella sampling method for the calculation of multidimensional potential of mean force of chemical reactions in solution.
J. Comput. Chem. 24:1775-1781, 2003.

201
Roux, B.
The calculation of the potential of mean force using computer simulations.
Comput. Phys. Commun. 91:275-282, 1995.

202
Eyring, H.
The activated complex and the absolute rate of chemical reactions.
Chem. Rev. 17(1):65-77, 1935.

203
Truhlar, D., Garrett, B., Klippenstein, S.
Current status of transition-state theory.
J. Phys. Chem. 100(31):12771-12800, 1996.

204
Geissler, P. L., Dellago, C., Chandler, D., Hutter, J., Parrinello, M.
Autoionization in liquid water.
Science 291:2121-2124, 2001.

205
Gao, J., Truhlar, D.
Quantum mechanical methods for enzyme kinetics.
Ann. Rev. Phys. Chem. 53:467-505, 2002.

206
Himo, F., Siegbahn, P. E. M.
Quantum chemical studies of radical-containing enzymes.
Chem. Rev. 103:2421-2456, 2003.

207
Noodleman, L., Lovell, T., Han, W.-G., Li, J., Himo, F.
Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems.
Chem. Rev. 104(2):459-508, 2004.

208
York, D. M., Lee, T.-S., Yang, W.
Quantum mechanical treatment of biological macromolecules in solution using linear-scaling electronic structure methods.
Phys. Rev. Lett. 80(22):5011-5014, 1998.

209
Boero, M., Terakura, K., Tateno, M.
Catalytic role of metal ion in the selection of competing reaction paths: A first principles molecular dynamics study of the enzymatic reaction in ribozyme.
J. Am. Chem. Soc. 124:8949-8957, 2002.

210
Benkovic, S. J., Hammes-Schiffer, S.
A perspective on enzyme catalysis.
Science 301:1196-1202, 2003.

211
Villŕ, J., Warshel, A.
Energetics and dynamics of enzymatic reactions.
J. Phys. Chem. B 105:7887-7907, 2001.

212
Garcia-Viloca, M., González-Lafont, A., Lluch, J. M.
A qm/mm study of the racemization of vinylglycolate catalyzed by mandelate racemase enzyme.
J. Am. Chem. Soc. 123:709-721, 2001.

213
Gerlt, J. A., Kozarich, J. W., Kenyon, G. L., Gassman, P. G.
Electrophilic catalysis can explain the unexpected acidity of carbon acids in enzyme-catalyzed reactions.
J. Am. Chem. Soc. 113(25):9667-9669, 1991.

214
Mitra, B., Kallarakal, A. T., Kozarich, J. W., Gerlt, J. A., Clifton, J. R., Petsko, G. A., Kenyon, G. L.
Mechanism of the reaction catalyzed by mandelate racemase: Importance of electrophilic catalysis by glutamic acid 317.
Biochemistry 34(9):2777-2787, 1995.

215
Gerlt, J. A., Gassman, P. G.
An explanation for rapid enzyme-catalyzed proton abstraction from carbon acids: importance of late transition states in concerted mechanisms.
J. Am. Chem. Soc. 115(24):11552-11568, 1993.

216
Bearne, S. L., Wolfenden, R.
Mandelate racemase in pieces: Effective concentrations of enzyme functional groups in the transition state.
Biochemistry 36(7):1646-1656, 1997.

217
Kenyon, G. L., Gerlt, J. A., Petsko, G. A., Kozarich, J. W.
Mandelate racemase: Structure-function studies of a pseudosymmetric enzyme.
Acc. Chem. Res. 28:178-186, 1995.

218
Humphrey, W., Dalke, A., Schulten, K.
Vmd: Visual molecular dynamics.
J. Mol. Graph. 14(1):33-38, 1996.

219
Li, R., Powers, V. M., Kozarich, J. W., Kenyon, G. L.
Racemization of vinylglycolate catalyzed by mandelate racemase.
J. Org. Chem. 60(11):3347-3351, 1995.

220
Landro, J. A., Kenyon, G. L., Kozarich, J. W.
Mechanism-based inactivation of mandelate racemase by propargylglycolate.
Bioorg. Med. Chem. Lett. 2(11):1411-1418, 1992.

221
Goriup, M., Strauss, U. T., Felfer, U., Kroutil, W., Faber, K.
Substrate spectrum of mandelate racemase part 1: Variation of the $ \alpha $-hydroxy acid moiety.
J. Mol. Catal. B 15:207-212, 2001.

222
Whitman, C. P., Hegeman, G. D., Cleland, W. W., Kenyon, G. L.
Symmetry and asymmetry in mandelate racemase catalysis.
Biochemistry 24(15):3936-3942, 1985.

223
Maurice, M. S., Bearne, S. L.
Reaction intermediate analogues for mandelate racemase: Interaction between asn 197 and the r-hydroxyl of the substrate promotes catalysis.
Biochemistry 39(44):13324-13335, 2000.

224
Goriup, M., Strauss, U. T., Felfer, U., Kroutil, W., Faber, K.
Substrate spectrum of mandelate racemase part 2. (hetero)-aryl-substituted mandelate derivatives and modulation of activity.
J. Mol. Catal. B 15:213-222, 2001.

225
Maurice, M. S., Bearne, S. L.
The low barrier hydrogen bond in enzymatic catalysis.
J. Biol. Chem. 39(44):13324-13335, 2000.

226
Schnell, B., Faber, K., Kroutil, W.
Enzymatic racemisation and its application to synthetic biotransformations.
Adv. Synth. Catal. 345:653-666, 2003.

227
Kallarakal, A. T., Mitra, B., Kozarich, J. W., Gerlt, J. A., Clifton, J. R., Petsko, G. A., Kenyon, G. L.
Mechanism of the reaction catalyzed by mandelate racemase: Structure and mechanistic properties of the k166r mutant.
Biochemistry 34(9):2788-2797, 1995.

228
Neidhart, D. J., Howell, P. L., Petsko, G. A., Powers, V. M., Li, R., Kenyon, G. L., Gerlt, J. A.
Mechanism of the reaction catalyzed by mandelate racemase. 2. crystal structure of mandelate racemase at 2.5 åresolution: Identification of the active site and possible catalytic residues.
Biochemistry 30(38):9264-9273, 1991.

229
Schafer, S. L., Barrett, W. C., Kallarakal, A. T., Mitra, B., Kozarich, J. W., Gerlt, J. A.
Mechanism of the reaction catalyzed by mandelate racemase: Structure and mechanistic properties of the d270n mutant.
Biochemistry 35(18):5662-5669, 1996.

230
Northrop, D. B.
Follow the protons: A low-barrier hydrogen bond unifies the mechanism of the aspartic proteases.
Acc. Chem. Res. 34(10):790-797, 2001.

231
Guthrie, J. P., Kluger, R.
Electrostatic stabilization can explain the unexpected acidity of carbon acids in enzyme-catalyzed reactions.
J. Am. Chem. Soc. 115(24):11569-11572, 1993.

232
Alagona, G., Ghio, C., Kollman, P. A.
Ab initio explorative survey of the mechanism catalyzed by mandelate racemase.
J. Mol. Struct. (Theochem) 390:217-223, 1997.

233
Landro, J. A., Gerlt, J. A., Kozarich, J. W., Koo, C. W., Shah, V. J., Kenyon, G. L., Neidhart, D. J., Fujita, S., Petsko, G. A.
The role of lysine 166 in the mechanism of mandelate racemase from pseudomonas putida: Mechanistic and crystallographic evidence for stereospecific alkylation by (r)-$ \alpha $-phenylglycidate.
Biochemsitry 33:635-643, 1994.

234
Hutter, M. C., Hughes, J. M., Reimers, J. R., Hus, N. S.
Modeling the bacterial photosynthetic reaction center. 2. a combined quantum mechanical/molecular mechanical study of the structure of the cofactors in the reaction centers of purple bacteria.
J. Phys. Chem. B 103(23):4906-4915, 1999.

235
Cheng, A., Stanton, R. S., Vincent, J. J., van der Vaart, A., Damodaran, K. V., Dixon, S. L., Hartsough, D. S., Mori, M., Best, S. A., Monard, G., Garcia-Viloca, M., Zant, L. C. V., Merz, Jr., K. M. ROAR 2.0.
The Pennsylvania State University. 1999.

236
Merz Jr., K. M., Banci, L.
Binding of azide to human carbonic anhydrase ii: The role electrostatic complementarity plays in selecting the preferred resonance structure of azide.
J. Phys. Chem. 100(43):17414-17420, 1996.

237
Jorgensen, W. L., Chandrasekhar, J., Madura, J., Impey, R. W., Klein, M. L.
Comparison of simple potential functions for simulating liquid water.
J. Chem. Phys. 79:926-935, 1983.

238
Gerlt, J. A., Gassman, P. G.
Understanding the rates of certain enzyme-catalyzed reactions: Proton abstraction from carbon acids, acyl-transfer reactions, and displacement reactions of phosphodiesters.
Biochemsitry 32(45):11943-11952, 1993.

239
Frisch, M. J., Trucks, G. W. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery Jr., J. A., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., , A., P. J.
Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh, PA, USA.
1998.

240
Schlick, T., Skeel, R., Brunger, A. T., Kalé, L. V., Board, J. A., Hermans, J., Schulten, K.
Algorithmic challenges in computational molecular biophysics.
J. Comput. Phys. 151:9-48, 1999.

241
Elber, R., Shalloway, D.
Temperature dependent reaction coordinates.
J. Chem. Phys. 112(13):5539-5545, 2000.

242
Das, B., Meirovitch, H., Navon, I. M.
Performance of hybrid methods for large-scale unconstrained optimization as applied to models of proteins.
J. Comput. Chem. 24:1222-1231, 2003.

243
Anglada, J. M., Besalú, E., Bofill, J. M.
Remarks on large-scale matrix diagonalization using a lagrange- newton-raphson minimization in a subspace.
Theor. Chem. Acc. 103:163-165, 1999.

244
Leininger, M. L., Sherrill, C. D., Allen, W. D., Schaefer III, H. F.
Systematic study of selected diagonalization methods for configuration interaction matrices.
J. Comp. Chem. 22(13):1574-1589, 2001.

245
Besalú, E., Bofill, J. M.
On the automatic restricted-step rational-function-optimization.
Theor. Chem. Acc. 100:265-274, 1998.

246
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J. D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D. LAPACK User's Guide.
3rd Ed. Philadelphia: SIAM. 1999.

247
Alagona, G., Ghio, C., Kollman, P. A.
Do enzymes stabilize transition states by electrostatic interactions or pka balance: The case of triose phosphate isomerase (tim)?
J. Am. Chem. Soc. 117(39):9855-9862, 1995.

248
Andrés, J., Moliner, V., Krechl, J., Silla, E.
J. Chem. Soc. Perkin Trans. 2:1551, 1995.

249
Gao, J.
Absolute free energy of solvation from monte carlo simulation using combined quantum and molecular mechanical potentials.
J. Phys. Chem. 96:537-540, 1992.

250
Truong, T. N., Stefanovich, E. V.
Development of a perturbative approach for monte carlo simulations using a hybrid ab initio qm/mm method.
Chem. Phys. Lett. 256:348-352, 1996.

251
Cubero, E., Luque, F. J., Orozco, M., Gao, J.
Perturbation approach to combined qm/mm simulation of solute-solvent interactions in solution.
J. Phys. Chem. B 107:1664-1671, 2003.

252
Evans, T. J., Truong, T. N.
Optimizing efficiency of perturbative monte carlo method.
J. Comput. Chem. 19(14):1632-1638, 1998.

253
Bell, S., Crighton, J. S., Fletcher, R.
A new efficient method for locating saddle points.
Chem. Phys. Lett. 82:122-126, 1981.

254
Golub, G. H., Loan, C. F. V. Matrix Computations.
3rd Ed. USA: The John Hopkins University Press. 1996.

255
Li, G., Cui, Q.
Analysis of functional motions in brownian molecular machines with an efficient block normal mode approach: Myosin-ii and ca$ ^+2$-atpase.
Bioph. J. 86(2):743-763, 2004.

256
Bofill, J. M., de Pinho Ribeiro Moreira, I., Anglada, J. M., Illas, F.
Accurate and efficient determination of higher roots in diagonalization of larges matrices based in function restricted optimization algorithms.
J. Comput. Chem. 21(15):1375-1386, 2000.

257
Bofill, J. M., Anglada, J. M.
Some remarks on the use of the three-term recurrence method in the configuration interaction eigenvalue problem.
Chem. Phys. 183:19-26, 1994.

258
Besalú, E., Bofill, J. M.
Calculation of clustered eigenvalues of large matrices using variance minimization method.
J. Comput. Chem. 19(15):1777-1785, 1998.

259
Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. Numerical Recipes in Fortran 77: The Art of Scientific Computing.
2nd Ed.: Cambridge University Press. copyright 1986-1992.

260
Gao, J., Garcia-Viloca, M., Poulsen, T. D., Mo, Y.
Solvent effects, reaction coordinates, and reorganization energies on nucleophilic substitution reactions in aqueous solution.
In: Advances in Physical Organic Chemistry. Vol. 38. Vol. 38. . Elsevier 2003  161-181.

261
Gao, J.
A priori computation of a solvent-enhanced sn2 reaction profile in water: the menshutkin reaction.
J. Am. Chem. Soc. 113(20):7796-7797, 1991.

262
van Gunsteren, W. F., Mark, A. E.
Validation of molecular dynamics simulation.
J. Chem. Phys. 108(15):6109-6116, 1998.



Xavier Prat Resina 2004-09-09